Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
numtheory[factorEQ] - integer factorization in Z(sqrt(d)) where Z(sqrt(d)) is a Euclidean ring
Calling Sequence
factorEQ(m, d)
Parameters
m
-
integer, list or set of integers in
d
integer where is a Euclidean ring
Description
The factorEQ function returns the integer factorization of m in the Euclidean ring .
Given integers and of , with , there is an integer such that , is true in . In these circumstances we say that there is a Euclidean algorithm in and that the ring is Euclidean.
Euclidean quadratic number fields have been completely determined. They are where d = -1, -2, -3, -7, -11, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, and 73.
When ,, all integers of have the form , where and are rational integers. When , all integers of are of the form where and are rational integers and of the same parity.
The answer is in the form: such that where are distinct prime factors of m, are non-negative integer numbers, is a unit in . For real Euclidean quadratic rings, i.e. d > 0, is represented under the form or or or where is the fundamental unit, and is a positive integer.
The expand function may be applied to cause the factors to be multiplied together again.
Examples
See Also
expand, GIfactor, ifactor, numtheory[sq2factor]
Download Help Document