Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
FFT - compute fast Fourier transform
iFFT - compute inverse fast Fourier transform
Calling Sequence
FFT(m, x, y)
evalhf(FFT(m, var(x), var(y)))
iFFT(m, x, y)
evalhf(iFFT(m, var(x), var(y)))
Parameters
m
-
non-negative integer
x, y
arrays of floats indexed from 1 to 2^m
Description
Important: The FFT and iFFT functions have been deprecated. Use the superseding functions FourierTransform and InverseFourierTransform in the DiscreteTransforms package instead. These new functions can compute the fast Fourier transform for sequences of arbitrary length (not restricted to a power of 2).
The FFT(m,x,y) and iFFT(m,x,y) commands compute in place the fast Fourier transform and the inverse fast Fourier transform of a complex sequence of length .
The first argument m should be a non-negative integer and the second and third arguments x and y should be arrays of floats indexed from 1 to . The array x contains the real part of the complex sequence on input and contains the real part of the fast Fourier transform on output. The array y contains the imaginary part of the complex sequence on input and contains the imaginary part of the fast Fourier transform on output. Both procedures return 2^m, the number of points in the complex sequence.
These procedures may be invoked with evalhf, which uses the hardware floating-point number system.
Examples
Important: The FFT and iFFT functions have been deprecated. Use the superseding functions FourierTransform and InverseFourierTransform in the DiscreteTransforms package instead.
See Also
DiscreteTransforms, DiscreteTransforms[FourierTransform], int, inttrans[laplace], inttrans[mellin], Matlab[fft]
References
Oppenheim, Allan, V., and Schafer, Ronald W. Digital Signal Processing. New Jersey: Prentice-Hall, 1975. See Fig. 6.5, p. 332.
Download Help Document