Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
AIrreduc - inert absolute irreducibility function
Calling Sequence
AIrreduc(P)
AIrreduc(P, S)
Parameters
P
-
multivariate polynomial
S
(optional) set or list of prime integers
Description
The AIrreduc function is a placeholder for testing the absolute irreducibility of the polynomial P, that is irreducibility over an algebraic closure of its coefficient field. It is used in conjunction with evala.
The call evala(AIrreduc(P)) tests the absolute irreducibility of the polynomial P over the field of complex numbers. The polynomial P must have algebraic number coefficients in RootOf notation (see algnum).
A univariate polynomial is absolutely irreducible if and only if it is of degree 1.
The function AIrreduc looks for sufficient conditions of absolute reducibility or irreducibility. It returns true if the polynomial P is detected absolutely irreducible, false if it is detected absolutely reducible, FAIL otherwise.
In the case of nonrational coefficients, only trivial conditions are tested.
If the polynomial P has rational coefficients, an absolute irreducibility criterion is sought over the reduction of P modulo p, where p runs through a set of prime integers. If S is given, the primes in S are used. Otherwise, the first ten odd primes and the first five primes greater than the degree of P are chosen. Although the probability for P to be absolutely reducible in case of failure is not controlled, it is very likely that P can be factored.
Examples
The following polynomial is absolutely irreducible, but has been specially constructed to deceive the test. This example illustrates the usefulness of the optional argument.
See Also
AFactor, alias, evala, irreduc, Irreduc, RootOf
References
Ragot, Jean-Francois. "Probabilistic Absolute Irreducibility Test of Polynomials." In Proceedings of MEGA '98. 1998.
Download Help Document