Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
combine/radical - combine radicals in products
Calling Sequence
combine(expr, radical)
combine(expr, radical, symbolic)
Parameters
expr
-
any expression
Description
The combine/radical function is used to combine products of radicals of the same power that appear in an expression.
The main transformation made by combine/radical is
where and are both positive, (i.e. ) and where are integers.
For example:
If the condition above is not satisfied, then let where . Then expand as so that the condition is now satisfied. If is an integer, Maple applies this transformation automatically.
For example: .
Suppose the sign of is known to be negative, i.e. . Then expand as so that the positive part can now be combined.
The new radical needs to be simplified. The new radicand is simplified by applying normal(x^m*y^n, expanded). For example: which after simplification yields
If the sign of and is not known, then combine will not combine the radicals because that is not correct for all and in general. For example for negative and . The user has two possibilities to force Maple to combine radicals of unknown sign. The first is to use assume to tell Maple the sign of the radicands. The second is to specify the optional argument symbolic which will assume all radicands of unknown sign are real and positive.
If the sign of one radicand is unknown -- for example, suppose that and is unknown -- then combine will still combine the radicands and because is known to be positive.
Examples
See Also
assume, normal/expanded, signum, simplify[radical], sqrt
Download Help Document