Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
SumTools[Summation] - compute closed forms of definite and indefinite sums
SumTools[DefiniteSummation] - compute closed forms of definite sums
SumTools[IndefiniteSummation] - compute closed forms of indefinite sums
Calling Sequence
Summation(f, k)
Summation(f, k=m..n, parametric)
Summation(f, k=alpha)
Summation(f, expr)
DefiniteSummation(f, k=m..n, parametric)
DefiniteSummation(f, k=alpha)
DefiniteSummation(f, k=expr)
IndefiniteSummation(f, k)
Parameters
f
-
expression; specified summand
k
name; summation index
m, n
integers or expressions
parametric
(optional) literal name
alpha
RootOf expression
expr
expression not containing k
Description
The IndefiniteSummation(f, k) command computes a closed form of the indefinite sum of f with respect to k, that is, it finds a function such that .
The DefiniteSummation(f, k=m..n) command computes a closed form of the definite sum of over the specified range .
For notational convenience, there are two special cases:
- The DefiniteSummation(f, k=alpha) command, where alpha is a RootOf structure, computes the definite sum of over the index of the specified RootOf
- The DefiniteSummation(f, k=expr) command is used for function evaluation at a specified point. This is an equivalence of eval(f, k=expr).
The Summation(f, ...) command is the combination of DefiniteSummation and IndefiniteSummation commands.
For a specified summation problem give to Summation, there is a preprocess that classifies whether the summation is a definite or indefinite sum. It then calls either IndefiniteSummation or DefiniteSummation as appropriate.
If Summation, IndefiniteSummation, or DefiniteSummation fails to compute a closed form, the unevaluated sum returns.
Note: The sum routine recognizes various resummation methods and thus is able to give the 'correct' value for various classes of divergent sums. If the environment variable _EnvFormal is set to true, sum uses this technique.
If _EnvFormal is set to false, then Maple tries harder to determine whether the given definite sum is divergent and returns infinity, -infinity, or unevaluated in that case. Note that this may slow down the computation.
In that case, Maple also tries to recognize removable singularities in the summation interval.
By default, _EnvFormal is unassigned.
For more information, see sum,details.
Options
If the option parametric is specified for a definite sum, then a result is returned that is valid for all possible integer values of any parameters occurring in the summand or the summation bounds. In general, the result is expressed in terms of piecewise functions.
Examples
Two examples of indefinite sums.
Example 1.
Example 2.
Two examples of definite sums:
Parametric case discussions may be returned:
Warning, unable to determine if the summand is singular in the interval of summation; try to use assumptions or use the parametric option
If _EnvFormal is set to true, the Summation command returns the class for recognized divergent sums.
See Also
product, RootOf, sum, SumTools
Download Help Document