Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
SumTools[IndefiniteSum][Hypergeometric] - compute closed forms of indefinite sums of hypergeometric terms
Calling Sequence
Hypergeometric(f, k, opt)
Parameters
f
-
hypergeometric term in k
k
name
opt
(optional) equation of the form failpoints=true or failpoints=false
Description
The Hypergeometric(f, k) command computes a closed form of the indefinite sum of with respect to .
The following algorithms are used to handle indefinite sums of hypergeometric terms (see the References section):
Gosper's algorithm,
Koepf's extension to Gosper's algorithm, and
the algorithm to compute additive decompositions of hypergeometric terms developed by Abramov and Petkovsek.
If the option failpoints=true (or just failpoints for short) is specified, then the command returns a pair , where is the closed form of the indefinite sum of w.r.t. , as above, and are lists of points where does not exist or the computed sum is undefined or improper, respectively (see SumTools[IndefiniteSum][Indefinite] for more detailed help).
The command returns if it is not able to compute a closed form.
Examples
Gosper's algorithm:
The points where the telescoping equation fails:
Error, numeric exception: division by zero
Koepf's extension to Gosper's algorithm:
Abramov and Petkovsek's algorithm (note that the specified summand is not hypergeometrically summable):
Error, (in SumTools:-Hypergeometric:-Gosper) no solution found
See Also
SumTools[IndefiniteSum], SumTools[IndefiniteSum][Indefinite]
References
Abramov, S.A., and Petkovsek, M. "Rational Normal Forms and Minimal Decompositions of Hypergeometric Terms." Journal of Symbolic
Gosper, R.W., Jr. "Decision Procedure for Indefinite Hypergeometric Summation." Proceedings of the National Academy of Sciences USA. Vol. 75. (1978): 40-42.
Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, 1998.
Abramov, S.A. and Petkovsek, M. "Gosper's Algorithm, Accurate Summation, and the discrete Newton-Leibniz formula." Proceedings ISSAC'05. (2005): 5-12.
Download Help Document