Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
SumTools[Hypergeometric][ZpairDirect] - perform direct algorithm to construct Zeilberger's recurrences for rational functions
Calling Sequence
ZpairDirect(F, n, k, En)
Parameters
F
-
rational function of n and k
n
name
k
En
name; denote the shift operator with respect to n
Description
Let F be a rational function of n and k, En the shift operator with respect to n defined by . The ZpairDirect(F, n, k, En) command computes a Z-pair such that
The output from ZpairDirect is a list of two elements representing the computed Z-pair provided such a pair exists.
The main distinction between ZpairDirect and Zeilberger's algorithm is that Zeilberger's algorithm uses an item-by-item examination technique for the order of the computed difference operator L. For more information, see Zeilberger.
The function ZpairDirect, on the other hand, uses a direct algorithm to construct a Z-pair for F. It first determines if there exists a Z-pair for F. If the answer is positive, it computes a Z-pair directly. Otherwise, it gives the conclusive error message ``there does not exist a Z-pair for F'' where F is the input rational function. When the Zeilberger routine is used, and if the input hypergeometric term T is also a rational function, ZpairDirect is invoked.
For the ZpairDirect routine, the input F must be a rational function.
Note: If you set infolevel[ZpairDirect] to 3, Maple prints diagnostics.
Examples
Set the infolevel to 3.
ZpairDirect: "Check for the existence of a Z-pair" ZpairDirect: "There exists a Z-pair" ZpairDirect: "Start computing a Z-pair for the given rational function"
If the routine cannot determine a Z-pair, Maple returns an error.
Error, (in SumTools:-Hypergeometric:-ZpairDirect) there does not exist a Z-pair for 1/(k^5+k^3*n+3*k^3-5*n*k^2-2*k^2-5*n^2-17*n-6)
See Also
infolevel, SumTools[Hypergeometric], SumTools[Hypergeometric][IsZApplicable], SumTools[Hypergeometric][MinimalZpair], SumTools[Hypergeometric][Zeilberger]
References
Le, H.Q. "A Direct Algorithm to Construct Zeilberger's Recurrences for Rational Functions." Proceedings FPSAC'2001, pp. 303-312. 2001.
Download Help Document