Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
SumTools[Hypergeometric][RationalCanonicalForm] - construct four rational canonical forms of a rational function
Calling Sequence
RationalCanonicalForm[1](F, n)
RationalCanonicalForm[2](F, n)
RationalCanonicalForm[3](F, n)
RationalCanonicalForm[4](F, n)
Parameters
F
-
rational function of n
n
variable
Description
Let F be a rational function of n over a field K of characteristic 0. The RationalCanonicalForm[i](F,n) calling sequence constructs the ith rational canonical forms for F, .
If the RationalCanonicalForm command is called without an index, the first rational canonical form is constructed.
The output is a sequence of 5 elements , called , where z is an element of K, and are monic polynomials over K such that:
.
for all integers k.
, .
Note: E is the automorphism of K(n) defined by .
The five-tuple that satisfies the three conditions is a strict rational normal form for F. The rational functions and are called the kernel and the shell of an , respectively.
Let be any RNF of a rational function F. Then the degrees of the polynomials r and s are unique, and have minimal possible values in the sense that if where p, q are polynomials in n, and G is a rational function of n, then and .
If then is minimal.
If then is minimal, and under this condition, is minimal.
Examples
Check the result from RationalCanonicalForm[1].
Condition 1 is satisfied.
Condition 2 is satisfied.
Condition 3 is satisfied.
Degrees of the kernel:
The degree of v1 is minimal.
The degree of u2 is minimal.
For , the degree of the shell is minimal.
See Also
evalb, LREtools[dispersion], subs, SumTools[Hypergeometric], SumTools[Hypergeometric][EfficientRepresentation], SumTools[Hypergeometric][MultiplicativeDecomposition], SumTools[Hypergeometric][PolynomialNormalForm], SumTools[Hypergeometric][SumDecomposition]
References
Abramov, S.A.; Le, H.Q.; and Petkovsek, M. "Rational Canonical Forms and Efficient Representations of Hypergeometric Terms." Proc. ISSAC'2003, pp. 7-14. 2003.
Abramov, S.A., and Petkovsek, M. "Canonical representations of hypergeometric terms." Proc. FPSAC'2001, pp. 1-10. 2001.
Download Help Document