Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
SumTools[Hypergeometric][MultiplicativeDecomposition] - construct the four minimal multiplicative decompositions of a hypergeometric term
Calling Sequence
MultiplicativeDecomposition[1](H, n, k)
MultiplicativeDecomposition[2](H, n, k)
MultiplicativeDecomposition[3](H, n, k)
MultiplicativeDecomposition[4](H, n, k)
Parameters
H
-
hypergeometric term of n
n
variable
k
name
Description
Let H be a hypergeometric term of n. The MultiplicativeDecomposition[i](H,n,k) calling sequence constructs the ith minimal multiplicative decomposition of H of the form where are rational functions of n, and have minimal possible values, for .
If then is minimal.
If then is minimal, and is minimal.
If the MultiplicativeDecomposition command is called without an index, the first minimal multiplicative decomposition is constructed.
Examples
See Also
SumTools[Hypergeometric], SumTools[Hypergeometric][EfficientRepresentation], SumTools[Hypergeometric][RationalCanonicalForm], SumTools[Hypergeometric][SumDecomposition]
References
Abramov, S.A.; Le, H.Q.; and Petkovsek, M. "Rational Canonical Forms and Efficient Representations of Hypergeometric Terms." Proc. ISSAC 2003, pp. 7-14. 2003.
Download Help Document