Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
SumTools[Hypergeometric][MinimalZpair] - compute the minimal Z-pair
SumTools[Hypergeometric][MinimalTelescoper] - compute the minimal telescoper
Calling Sequence
MinimalZpair(T, n, k, En)
MinimalTelescoper(T, n, k, En)
Parameters
T
-
hypergeometric term of n and k
n
name
k
En
name; denote the shift operator with respect to n
Description
For a specified hypergeometric term of n and k, MinimalZpair(T, n, k, En) constructs for the minimal Z-pair ; MinimalTelescoper(T, n, k, En) constructs for the minimal telescoper .
L and G satisfy the following properties:
1. is a linear recurrence operator in En with polynomial coefficients in n.
2. is a hypergeometric term of n and k.
3. , where denotes the shift operator with respect to k.
4. The order of L w.r.t. En is minimal.
The execution steps of MinimalZpair can be described as follows.
1. Determine the applicability of Zeilberger's algorithm to .
2. If it is proven in Step 1 that a Z-pair for does not exist, return the conclusive error message ``Zeilberger's algorithm is not applicable''. Otherwise,
a. If is a rational function in n and k, apply the direct algorithm to compute the minimal Z-pair for .
b. If is a nonrational term, first compute a lower bound u for the order of the telescopers for . Then compute the minimal Z-pair using Zeilberger's algorithm with u as the starting value for the guessed orders.
For case 2b, since the term T2 in the additive decomposition of T is ``simpler'' than T in some sense, we first apply Zeilberger's algorithm to T2 to obtain the minimal Z-pair for T2. It is easy to show that is the minimal Z-pair for the input term T.
Examples
Case 1: Zeilberger's algorithm is not applicable to the input term T.
Error, (in SumTools:-Hypergeometric:-MinimalZpair) Zeilberger's algorithm is not applicable
Case 2a: Rational Function
Case 2b: Hypergeometric
See Also
SumTools[Hypergeometric], SumTools[Hypergeometric][IsZApplicable], SumTools[Hypergeometric][LowerBound], SumTools[Hypergeometric][Zeilberger], SumTools[Hypergeometric][ZpairDirect]
References
Abramov, S.A.; Geddes, K.O.; and Le, H.Q. "Computer Algebra Library for the Construction of the Minimal Telescopers." Proceedings ICMS'2002, pp. 319- 329. World Scientific, 2002.
Download Help Document