Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
SumTools[Hypergeometric][LowerBound] - compute a lower bound for the order of the telescopers for a hypergeometric term
Calling Sequence
LowerBound(T, n, k, En, 'Zpair')
Parameters
T
-
hypergeometric term in n and k
n
name
k
En
(optional) name denoting the shift operator with respect to n
'Zpair'
(optional) name
Description
Let T be a hypergeometric term in n and k. The function LowerBound(T, n, k) computes a lower bound for the order of the telescopers for T if it is guaranteed that Zeilberger's algorithm is applicable to T.
If the fourth and the fifth optional arguments (each of which can be any name), En and 'Zpair' respectively, are specified, the minimal telescoper for T is computed and assigned to the fifth argument 'Zpair' using the computed lower bound as the starting value of the guessed orders.
Examples
Zeilberger's algorithm is not applicable to the following hypergeometric term so LowerBound returns an error.
Error, (in SumTools:-Hypergeometric:-LowerBound) Zeilberger's algorithm is not applicable
The computed lower bound is 3, while the order of the minimal telescoper is
See Also
SumTools[Hypergeometric], SumTools[Hypergeometric][IsZApplicable], SumTools[Hypergeometric][MinimalZpair], SumTools[Hypergeometric][Zeilberger], SumTools[Hypergeometric][ZpairDirect]
References
Abramov, S.A. and Le, H.Q. "A Lower Bound for the Order of Telescopers for a Hypergeometric Term." CD-ROM. Proceedings FPSAC 2002. (2002).
Download Help Document