Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
SumTools[Hypergeometric][EfficientRepresentation] - construct the four efficient representations of a hypergeometric term
Calling Sequence
EfficientRepresentation[1](H, n)
EfficientRepresentation[2](H, n)
EfficientRepresentation[3](H, n)
EfficientRepresentation[4](H, n)
Parameters
H
-
hypergeometric term of n
n
variable
Description
Let H be a hypergeometric term of n. The EfficientRepresentation[i](H,n) calling sequence constructs the ith efficient representation of H of the form where alpha is a constant, is a product of Gamma-function values and their reciprocals. Additionally,
has the minimal number of factors,
is a rational function which is minimal in one sense or another, depending on the particular rational canonical form chosen to represent the certificate of .
If then is minimal;
if then is minimal;
if then is minimal, and is minimal;
if then is minimal, and is minimal.
If EfficientRepresentation is called without an index, the first efficient representation is constructed.
Examples
See Also
SumTools[Hypergeometric], SumTools[Hypergeometric][MultiplicativeDecomposition], SumTools[Hypergeometric][RationalCanonicalForm], SumTools[Hypergeometric][RegularGammaForm], SumTools[Hypergeometric][SumDecomposition]
References
Abramov, S.A.; Le, H.Q.; and Petkovsek, M. "Rational Canonical Forms and Efficient Representations of Hypergeometric Terms." Proc. ISSAC'2003, pp. 7-14. 2003.
Download Help Document