Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
SumTools[Hypergeometric][DefiniteSum] - compute the definite sum
Calling Sequence
DefiniteSum(T, n, k, l..u)
Parameters
T
-
function of n
n
name
k
l..u
range for k
Description
For a specified hypergeometric term T of n and k, the DefiniteSum(T, n, k, l..u) command computes, if it exists, a closed form for the definite sum .
Let r, s, u, v be integers. The DefiniteSum command computes closed forms for four types of definite sums. They are , , , and .
A closed form is defined as one that can be represented as a sum of hypergeometric terms or as a d'Alembertian term.
If the input T is a definite sum of a hypergeometric term, and if the environment variable _EnvDoubleSum is set to true, then DefiniteSum tries to find a closed form for the specified definite sum of T. Note that this operation can be very expensive.
For more information on the construction of the minimal Z-pair for T, see ExtendedZeilberger.
Note: If you set infolevel[DefiniteSum] to 3, Maple prints diagnostics.
Examples
Set the infolevel to 3.
DefiniteSum: "try algorithms for definite sum" Definite: "Construct the Zeilberger's recurrence" Definite: "Solve the recurrence equation ..." Definite: "Find hypergeometric solutions" Definite: "Find a particular d'Alembertian solution" Definite: "Solve the homogeneous linear recurrence equation" Definite: "Construction of the general solution successful" Definite: "Solve the initial-condition problem"
See Also
infolevel, LinearOperators[dAlembertianSolver], LREtools[hypergeomsols], sum, SumTools[Hypergeometric], SumTools[Hypergeometric][ExtendedZeilberger], SumTools[Hypergeometric][IndefiniteSum], SumTools[Hypergeometric][Zeilberger]
References
Abramov, S.A., and Zima, E.V. "D'Alembertian Solutions of Inhomogeneous Linear Equations (differential, difference, and some other)." Proceedings ISSAC'96, pp. 232-240. 1996.
Petkovsek, M. "Hypergeometric Solutions of Linear Recurrences with Polynomial Coefficients." Journal of Symbolic Computing. Vol. 14. (1992): 243-264.
van Hoeij, M. "Finite Singularities and Hypergeometric Solutions of Linear Recurrence Equations." Journal of Pure and Applied Algebra. Vol. 139. (1999): 109-131.
Zeilberger, D. "The Method of Creative Telescoping." Journal of Symbolic Computing. Vol. 11. (1991): 195-204.
Download Help Document