Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
SumTools[DefiniteSum][Definite] - compute closed forms of definite sums
Calling Sequence
Definite(f, k=m..n)
Definite(f, k=m..n, parametric)
Definite(f, k=alpha)
Definite(f, k=expr)
Parameters
f
-
expression; the summand
k
name; the summation index
m, n
expressions or integers; the summation bounds
parametric
(optional) literal name
alpha
RootOf expression
expr
expression not containing k
Description
The Definite(f, k=m..n) command computes a closed form of the definite sum of over the specified range of .
The function is a combination of different algorithms. They include
the method of integral representation,
the method of first computing a closed form of the corresponding indefinite sum and then applying the discrete Newton-Leibniz formula,
the method of computing closed forms of definite sums of hypergeometric terms (see SumTools[Hypergeometric]), and
the method of first converting the given definite sum to hypergeometric functions, and then converting these hypergeometric functions to standard functions (if possible).
For more information, see sum.
Options
If the option parametric is specified, then Definite returns a result that is valid for all possible integer values of any parameters occurring in the summand or the summation bounds. In general, the result is expressed in terms of piecewise functions.
Examples
Parametric case discussions may be returned:
Warning, unable to determine if the summand is singular in the interval of summation; try to use assumptions or use the parametric option
Sum over RootOf:
See Also
sum, SumTools[DefiniteSum], SumTools[DefiniteSum][CreativeTelescoping], SumTools[DefiniteSum][pFqToStandardFunctions], SumTools[DefiniteSum][Telescoping], SumTools[IndefiniteSummation], SumTools[Summation]
References
Egorychev, G.P. "Integral Representation and the Computation of Combinatorial Sums." Novosibirsk, Nauka. (1977). (in Russian); English: Translations of Mathematical Monographs. Vol. 59. American Mathematical Society. (1984).
Roach, K. "Hypergeometric Function Representations." Proceedings ISSAC 1996, pp. 301-308. New York: ACM Press, 1996.
van Hoeij, M. "Finite Singularities and Hypergeometric Solutions of Linear Recurrence Equations." Journal of Pure and Applied Algebra. Vol. 139. (1999): 109-131.
Zeilberger, D. "The Method of Creative Telescoping." Journal of Symbolic Computing. Vol. 11. (1991): 195-204.
Download Help Document