Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Commands for Computing Properties of Random Variables
The Statistics package provides a wide range of tools for working with random variables. This includes tools for creating random variables from specific distributions, commands for computing basic quantities, and related functions, simulation and visualization routines.
Creating New Random Variables
Random variables are created using the RandomVariable command.
with(Statistics):
X := RandomVariable(Normal(5, 1));
Y := RandomVariable(Normal(7, 1));
Random variables can be distinguished from ordinary variables (names) by their attributes. Type RandomVariable can be used to query whether a given Maple object is a random variable or not.
type(X, RandomVariable);
type(Z, RandomVariable);
indets(X+Y+Z, RandomVariable);
Computing with Random Variables
The Statistics package provides a number of tools for computing basic quantities and functions. Single random variables as well as algebraic expressions (e.g. linear combinations, products, etc.) involving random variables are supported. Different random variables involved in an expression are considered to be independent. By default, all computations involving random variables are performed symbolically.
AbsoluteDeviation
compute the average absolute deviation
CDF
cumulative distribution function
CentralMoment
central moments
CGF
cumulant generating function
CharacteristicFunction
characteristic function
Cumulant
cumulants
CumulantGeneratingFunction
CumulativeDistributionFunction
Decile
deciles
ExpectedValue
compute expected values
FailureRate
hazard (failure) rate
GeometricMean
geometric mean
HarmonicMean
harmonic mean
HazardRate
InterquartileRange
interquartile range
InverseSurvivalFunction
inverse survival function
Kurtosis
kurtosis
MakeProcedure
generate a procedure for calculating statistical quantities
Mean
arithmetic mean
MeanDeviation
average absolute deviation from the mean
Median
median
MedianDeviation
compute the median absolute deviation
MGF
moment generating function
MillsRatio
Mills ratio
Mode
mode
Moment
moments
MomentGeneratingFunction
OrderStatistic
order statistics
PDF
probability density function
Percentile
percentiles
Probability
compute the probability of an event
ProbabilityDensityFunction
ProbabilityFunction
probability function
QuadraticMean
quadratic mean
Quantile
quantiles
Quartile
quartiles
RandomVariable
create new random variables
Skewness
skewness
StandardDeviation
standard deviation
StandardError
standard error of the sampling distribution
StandardizedMoment
standardized moments
Support
support set of a random variable
SurvivalFunction
survival function
Variance
variance
Variation
coefficient of variation
Examples
Compute the PDF and the CDF of the non-central beta distribution.
Compute the PDF, mean, standard deviation and moments of a Beta random variable.
Create two normal random variables.
Compute the density of X/Y. Compare the result with the Cauchy density.
Compute some probabilities.
The speed distribution for the molecules of an ideal gas.
Create random variable having this distribution.
Compute average molecular speed.
Compute average kinetic energy.
Helium at 25C.
Most probable speed.
Warning, solutions may have been lost
Use simulation to verify the results.
See Also
Statistics, Statistics[Computation], Statistics[DescriptiveStatistics], Statistics[Distributions], Statistics[Simulation]
Download Help Document