Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Slode[msparse_series_sol] - formal m-sparse power series solutions for a linear ODE
Calling Sequence
msparse_series_sol(ode, var, vn, opts)
msparse_series_sol(LODEstr, vn, opts)
Parameters
ode
-
linear ODE with polynomial coefficients
var
dependent variable, for example y(x)
vn
new function in the form
opts
optional arguments of the form keyword=value
LODEstr
LODEstruct data structure
Description
The msparse_series_sol command returns a set of m-sparse power series solutions of the given linear ordinary differential equation with polynomial coefficients.
If ode is an expression, then it is equated to zero.
The routine returns an error message if the differential equation ode does not satisfy the following conditions.
ode must be homogeneous and linear in var
ode must have polynomial coefficients in the independent variable of var, for example,
The coefficients of ode must be either rational numbers or depend rationally on one or more parameters.
A homogeneous linear ordinary differential equation with coefficients that are polynomials in has a linear space of formal power series solutions where is one of , , , or , is the expansion point, and the sequence satisfies a homogeneous linear recurrence.
This routine selects such formal power series solutions where for an integer there is an integer such that
only if , and
for all sufficiently large , where is a rational function.
The m-sparse power series is represented by an FPSstruct data-structure (see Slode[FPseries]):
where
,..., are expressions, the initial series coefficients,
is a nonnegative integer, and
is an integer such that .
Options
x=a or 'point'=a
Specifies the expansion point a. The default is . It can be an algebraic number, depending rationally on some parameters, or .
If this option is given, then the command returns a set of m-sparse power series solutions at the given point a. Otherwise, it returns a set of m-sparse power series solutions for all possible points that are determined by Slode[candidate_mpoints](ode,var).
'sparseorder'=m0
Specifies an integer m0. If this option is given, then the procedure computes a set of m-sparse power series solutions with only. Otherwise, it returns a set of m-sparse power series solution for all possible values of .
If both an expansion point and a sparse order are given, then the command can also compute a set of m-sparse series solutions for an inhomogeneous equation with polynomial coefficients and a right-hand side that is rational in the independent variable . Otherwise, the equation has to be homogeneous.
'free'=C
Specifies a base name C to use for free variables C[0], C[1], etc. The default is the global name _C. Note that the number of free variables may be less than the order of the given equation if the expansion point is singular.
Examples
Inhomogeneous equations are handled:
See Also
LODEstruct, Slode, Slode[candidate_mpoints], Slode[FPseries]
Download Help Document