Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
SNAP[EuclideanReduction] - compute the smallest degree pair of univariate polynomials by Euclidean-like unimodular reduction
Calling Sequence
EuclideanReduction(a, b, z, tau = eps, out)
Parameters
a, b
-
univariate numeric polynomials
z
name; indeterminate for a and b
tau = eps
(optional) equation where eps is of type numeric and non-negative; stability parameter
out
(optional) equation of the form output = obj where obj is 'UR' or a list containing one or more instances of this name; select result objects to compute
Description
The EuclideanReduction(a, b, z) command returns the last numerically well-conditioned basis accepted by the Coprime algorithm [2]. This corresponds to the smallest degree pair of polynomials in the sequence of numerically well-behaved polynomial remainders that can be obtained from (a,b) by unimodular reduction.
It thus provides the user with a pair of polynomials that generates the same ideal generated by (a,b) but with degrees that are, in general, much smaller. Furthermore, the highest degree component of such a reduced pair is a good candidate for an epsilon-GCD of (a,b).
The optional stability parameter tau can be set to any non-negative value eps to control the quality of the output. Decreasing eps yields a more reliable solution. Increasing eps reduces the degrees of the returned basis.
As specified by the out option, Maple returns an expression sequence containing the following:
* UR contains a 2 by 2 unimodular matrix polynomial U in z such that where (a', b') is the last basis accepted by the algorithm of [2].
Examples
See Also
SNAP[DistanceToCommonDivisors], SNAP[EpsilonGCD]
References
Beckermann, B., and Labahn, G. "A fast and numerically stable Euclidean-like algorithm for detecting relatively prime numerical polynomials." Journal of Symbolic Computation. Vol. 26, (1998): 691-714.
Beckermann, B., and Labahn, G. "When are two numerical polynomials relatively prime?" Journal of Symbolic Computation. Vol. 26, (1998): 677-689.
Download Help Document