Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
SNAP[AreCoprime] - determine if two numeric polynomials are relatively prime up to a given error bound
SNAP[IsSingular] - determine if a numeric polynomial has a double root up to a given error bound
Calling Sequence
AreCoprime(a, b, z, eps, out)
IsSingular(a, z, eps, out)
Parameters
a, b
-
univariate numeric polynomials
z
name; indeterminate for a and b
eps
non-negative numeric; error bound
out
(optional) equation of the form output = obj where obj is 'BC' or a list containing one or more instances of this name; select result objects to compute
Description
The AreCoprime(a, b, z, eps) command checks whether univariate numeric polynomials a, b in z remain coprime after perturbations of order eps. This is done by computing reliable lower and upper bounds on the distance between the pair (a, b) and the set of the univariate complex polynomial pairs in z with degrees that do not exceed those of a and b, and that have at least one common root. (See SNAP[DistanceToCommonDivisors].)
The lower bound LB is obtained using the SNAP[DistanceToCommonDivisors] function. The upper bound UP is the minimum between the 1-norm of a and the 1-norm of b.
If eps > UP, false is returned;
if eps < LB, true is returned;
if LB <= eps <= UP, FAIL is returned because it is impossible to provide a reliable answer.
The IsSingular(a, z, eps) command checks whether the univariate numeric polynomial a in z has common roots up to perturbations of order eps. It essentially calls AreCoprime(a, b, z) with b = diff(a, z).
The output option (out) determines the content of the returned expression sequence.
As specified by the out option, Maple returns an expression sequence containing one or more BC, which is the list [v, u] of the numeric polynomials in z that satisfy av+bu=1 and and (bezout coefficients for coprime polynomials a and b). This list is empty if the routine returns false or FAIL.
Examples
See Also
expand, SNAP[DistanceToCommonDivisors], SNAP[DistanceToSingularPolynomials]
References
Beckermann, B., and Labahn, G. "A fast and numerically stable Euclidean-like algorithm for detecting relatively prime numerical polynomials." Journal of Symbolic Computation. Vol. 26, (1998): 691-714.
Beckermann, B. and Labahn, G. "When are two numerical polynomials relatively prime?" Journal of Symbolic Computation. Vol. 26, (1998): 677-689.
Download Help Document