Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[MatrixTools][MatrixMultiply] - compute the product of two matrices modulo a regular chain
Calling Sequence
MatrixMultiply(A, B, rc, R)
Parameters
A
-
Matrix with coefficients in the field of fractions of R
B
rc
regular chain of R
R
polynomial ring
Description
The command MatrixMultiply(A, B, rc, R) returns the product of A and B mod the saturated ideal of rc.
The result is viewed as a matrix with coefficients in the total ring of fractions of R/I where I is the saturated ideal of rc.
The implementation is based on the method proposed in the paper "On {W}inograd's Algorithm for Inner Products" by A. Waksman.
It is assumed that rc is strongly normalized.
This command is part of the RegularChains[MatrixTools] package, so it can be used in the form MatrixMultiply(..) only after executing the command with(RegularChains[MatrixTools]). However, it can always be accessed through the long form of the command by using
Examples
See Also
Chain, Empty, Equations, IsStronglyNormalized, IsZeroMatrix, JacobianMatrix, LowerEchelonForm, Matrix, MatrixInverse, MatrixOverChain, MatrixTools, NormalForm, PolynomialRing, RegularChains
References
A. Waksman "On Winograd's Algorithm for Inner Products." IEEE Transactions On Computers, C-19, (1970): 360-361.
Download Help Document