Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[ChainTools][EquiprojectableDecomposition] - equiprojectable decomposition of a variety
Calling Sequence
EquiprojectableDecomposition(lrc, R)
Parameters
lrc
-
list of regular chains of R
R
polynomial ring
Description
The command EquiprojectableDecomposition(lrc, R) returns the equiprojectable decomposition of the variety given by lrc.
The variety encoded by lrc is the union of the regular zero sets of the regular chains of lrc.
It is assumed that every regular chain in lrc is zero-dimensional and strongly normalized.
This command is part of the RegularChains[ChainTools] package, so it can be used in the form EquiprojectableDecomposition(..) only after executing the command with(RegularChains[ChainTools]). However, it can always be accessed through the long form of the command by using RegularChains[ChainTools][EquiprojectableDecomposition](..).
Examples
See Also
Equations, MatrixCombine, PolynomialRing, RegularChains, Triangularize
References
Dahan, X.; Moreno Maza, M.; Schost, E.; Wu, W. and Xie, Y. "Equiprojectable decompositions of zero-dimensional varieties" In proc. of International Conference on Polynomial System Solving, University of Paris 6, France, 2004.
Download Help Document