Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
QDifferenceEquations[QPolynomialNormalForm] - construct the q-polynomial normal form of a rational function
Calling Sequence
QPolynomialNormalForm(F, q, n)
Parameters
F
-
rational function of n
q
name used as the parameter q, usually q
n
variable
Description
Let F be a rational function of n over a field K of characteristic 0, q is a nonzero element of K which is not a root of unity. The QPolynomialNormalForm(F,q,n) command constructs the q-polynomial normal form for F.
The output is a sequence of 4 elements where z is an element of K, and are monic polynomials over K such that:
Note: Q is the automorphism of K(n) defined by {Q(F(n)) = F(q*n)}.
Examples
Check the results.
Condition 1 is satisfied.
Condition 2 is satisfied.
Condition 3 is satisfied.
Condition 4 is satisfied.
See Also
QDifferenceEquations[QDispersion], QDifferenceEquations[QRationalCanonicalForm]
References
Abramov, S.A., and Petkovsek, M. "Finding all q-hypergeometric solutions of q-difference equations." Proc. FPSAC '95, Univ.de Marne-la-Vall'ee, Noisy-le-Grand, pp. 1-10. 1995.
Koornwinder, T.H. "On Zeilberger's algorithm and its q-analogue: a rigorous description." J. Comput. Appl. Math. Vol. 48. (1993): 91-111.
Download Help Document