Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
PolynomialTools[MinimalPolynomial] - find minimal polynomial for an approximate root
Calling Sequence
MinimalPolynomial(r, n, acc)
Parameters
r
-
approximate root
n
degree of the polynomial sought
acc
(optional) desired accuracy of the approximation
Description
The MinimalPolynomial(r, n) function uses the lattice algorithm to find a polynomial of degree n (or less) with small integer coefficients which has the given approximation r of an algebraic number as one of its roots.
The root r may be real or complex. It may be input as a floating-point approximation to a root or as an exact algebraic number. In the latter case, it will first be evaluated in floating point at Digits precision. Note that this procedure is intended for approximate inputs, because if r is an exact algebraic number then the minimum polynomial can be found with the command evala(Norm(_X-r)), where r is in RootOf notation.
If a third argument is specified, then the value is given the same weight as the coefficients in determining the polynomial. The default value for acc is 10^(Digits-2).
This function is part of the PolynomialTools package, and so it can be used in the form MinimalPolynomial(..) only after executing the command with(PolynomialTools). However, it can always be accessed through the long form of the command by using PolynomialTools[MinimalPolynomial](..).
Examples
The minimum polynomial of the exact expression s can be determined by:
See Also
evala/Norm, IntegerRelations[LLL], LinearAlgebra[MinimalPolynomial]
Download Help Document