Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
PolynomialIdeals[EquidimensionalDecomposition] - Decompose an ideal into ideals of distinct dimension
Calling Sequence
EquidimensionalDecomposition(J)
Parameters
J
-
a polynomial ideal
Description
The EquidimensionalDecomposition command computes a sequence of ideals of distinct Hilbert dimension whose intersection is equal to the original ideal. Assuming there are no embedded primes, the prime components of each ideal in the sequence have the same dimension also. In general this decomposition is not unique.
This function is part of the PolynomialIdeals package, and can be used in the form EquidimensionalDecomposition(..) only after executing the command with(PolynomialIdeals). However, it can always be accessed through the long form of the command using PolynomialIdeals[EquidimensionalDecomposition](..).
Compatibility
The PolynomialIdeals[EquidimensionalDecomposition] command was updated in Maple 16.
Examples
In the example below, the variety is composed of five points (dimension zero), three curves (dimension one), and one surface (dimension two). The equidimensional decomposition places all of the points, all of the curves, and all of the surfaces into separate ideals.
The next example illustrates what happens when embedded primes are present.
See Also
map, PolynomialIdeals[HilbertDimension], PolynomialIdeals[Intersect], PolynomialIdeals[PrimeDecomposition], PolynomialIdeals[Simplify], PolynomialIdeals[ZeroDimensionalDecomposition]
References
Becker, T., and Weispfenning, V. Groebner Bases. Springer-Verlag, 1993.
Download Help Document