Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
FunctionAdvisor/DE - return the differential equation form of a given mathematical function
Calling Sequence
FunctionAdvisor(DE, math_function, var)
Parameters
DE
-
name where DE is one of the literal names 'DE', 'ODE', or 'PDE'
math_function
Maple name of mathematical function
var
optional, a list of independent variable(s) or the main dependent variable
Description
The FunctionAdvisor(DE, math_function) command returns an all polynomial differential equation system satisfied by the function, when it exists.
A differential equation system is polynomial when it is polynomial in the independent variables, unknown functions, and its derivatives. For more information, see dpolyform.
Examples
Note that 'ODE' and 'PDE' are synonyms for 'DE'.
The variables used by the FunctionAdvisor command to create the calling sequence are local variables. Therefore, the previous examples does not depend on z.
To make the FunctionAdvisor command return results using global variables, pass the actual function call instead of the function name. In this case, for some special functions it is also necessary to indicate which variables are the "differential equation independent variables". For examples, consider the following.
Moreover, in the case of the DE topic, the arguments in the function call need not be a name, in which case the differential equation system for the composed function call given is computed. Compare the differential equation for JacobiTheta1 above and this other one taking as argument
Apart from optionally passing a list of independent variables, one can pass the dependent variable directly (it includes the information on the independent variables):
See Also
depends, FunctionAdvisor, FunctionAdvisor/differentiation_rule, FunctionAdvisor/topics, PDEtools/dpolyform
Download Help Document