Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Eigenvals - eigenvalues/vectors of a numeric matrix
Calling Sequence
Eigenvals(A, vecs)
Eigenvals(A, B, vecs)
Parameters
A, B
-
square matrices of real or complex numbers
vecs
(optional) name to be assigned the matrix of eigenvectors
Description
Important: The command Eigenvals has been deprecated. Use the superseding commands LinearAlgebra[Eigenvalues] and LinearAlgebra[Eigenvectors] instead.
Eigenvals(A) returns an array of the eigenvalues of A. The eigenvalues are computed by the QR method. The matrix is first balanced and transformed into upper Hessenberg form. Then the eigenvalues (eigenvectors) are computed.
If an optional parameter vecs (which must be an unassigned name) is supplied, the eigenvectors are returned in an n by n array assigned to the name vecs, such that the ith column is the ith eigenvector corresponding to the ith eigenvalue.
If the ith eigenvalue is complex and the (i+1)th eigenvalue is its complex conjugate, then the ith and (i+1)th columns in the eigenvector array contain the real and imaginary parts of the eigenvector corresponding to the ith eigenvalue. In this case, the real and imaginary components of the eigenvector corresponding to the (i+1)th eigenvalue are comprised respectively of the ith column and the negation of the (i+1)th column of the eigenvector array.
Note that in the two argument form, vecs must be unassigned, otherwise it will taken to be the input for the generalized problem of the three argument form (i.e., the argument B in the second calling sequence above). For multiple calls using the same name for vecs, enclose the name in single quotes.
If the matrix is symmetric then the routine will handle the matrix specially (using a faster algorithm).
This routine also handles the generalized eigenvalue problem: find eigenvalues and eigenvectors L and X such that where A and B are square matrices of the same dimensions.
The function Eigenvals itself is inert. To actually compute the eigenvalues and eigenvectors, the user must evaluate the inert function in the floating point domain, by evalf(Eigenvals(A)).
Examples
Note: If we did not unassign vecs, the following command would be interpreted as a generalized eigenvalue problem.
See Also
LinearAlgebra[Eigenvalues], LinearAlgebra[Eigenvectors]
Download Help Document