Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Domains[coding] - writing functions in Domains
Description
The basic idea for writing code in Domains for computing with elements of a domain(s) is to pass the domain(s) as an argument(s) to the procedure. Essentially passing a collection of routines for manipulating elements of the domain. E.g., let us write a routine to evaluate a univariate polynomial a(x) at x=b. Our routine would look like this
Evaluate := proc(P,a,b) local R,k,d,r;
if not hasCategory(P,UnivariatePolynomial) then error "..." end if;
R := P[CoefficientRing];
We pass the domain P as the first argument and check that it is a univariate polynomial domain then since we need to do coefficient operations, we get the coefficient ring and call it R.
Next, we check the argument types of a and x as follows
if not P[Type](a) then error "2nd argument must be of type P" end if;
if not R[Type](b) then error "3rd argument must be of type R" end if;
Now we can do the polynomial evaluation using Horners rule in the normal way. We need to use the Degree and Coeff functions from the univariate polynomial domain P, and the arithmetic operations `+` and `*` from the coefficient domain R.
d := P[Degree](a);
r := P[Coeff](a,d);
for k from d-1 by -1 to 0 do r := R[`+`](R[`*`](r,b),P[Coeff](a,k)) end do;
r
end proc:
Note: the overhead of the table referencing in this example is quite small. I.e. the time to access the procedures P[Degree] and R[`+`] etc. One might think to optimize this by factoring the table referencing operations out of the inner loop as follows. Define three local variables cof, add, mul, and
Note: P[Coeff], R[`*`], and R[`+`] are assigned to Maple procedures so eval must be used to evaluate to the procedure. Then recoding the main loop as
for k from d-1 by -1 to 0 do r := add(mul(r,b),cof(a,k)) end do;
But this saves very little time. The main overhead in Domains comes not from this table subscripting but from the fact that almost every function in Domains does a Maple procedure call. I.e. the operations P[Degree], P[Coeff], R[`+`], and R[`*`] are in general Maple procedure calls, which execute slower than builtin Maple functions. E.g. P[Degree] and P[Coeff] will execute slower on the polynomial data structure than the builtin Maple functions degree and coeff do on the builtin Maple sum-of-products data structure.
Download Help Document