Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[WeylTensor] - calculate the Weyl curvature tensor of a metric
Calling Sequences
WeylTensor(g, R)
Parameters
g - a metric on a manifold M
R - (optional) the curvature tensor of the metric g, as computed from the Christoffel symbols of g
Description
Let R_{ijhk} be the rank 4 contravariant tensor obtained from the curvature tensor of g by lowering its first index with the metric g. Let R_{ih} be the Ricci tensor and R the Ricci scalar. Then the trace-free part of R_{ijhk} is the Weyl tensor W of the metric g. If the dimension of M is n, then in components
W_{ijhk} = R_{ijhk} - 1/(n - 2)*(g_{ih} R_{jk} - g_{jh} R_{ik} - g_{ik} R_{jh} + g_{jk} R_{ih}) + 1/(n - 1)(n - 2)*(g_{ih} g_{jk} - g_{jh} g_{ik})*R.
The Weyl tensor vanishes identically in dimension n = 3. If g' = f*g, then W(g') = f*W(g).
In addition to being trace-free over any index pair, the Weyl tensor also satisfies the first Bianchi identity.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form WeylTensor(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-WeylTensor.
Examples
Example 1.
First create a 3 dimensional manifold M and show that the Weyl tensor of a randomly defined metric g1 is zero.
Calculate the Christoffel symbols.
Calculate the curvature tensor.
Calculate the Weyl tensor.
Example 3.
Define a 4 dimensional manifold and a metric g2.
Calculate the Weyl tensor directly from the metric g2
We check the various properties of the Weyl tensor. First we check that it is skew-symmetric in its 1st and 2nd indices, and also in its 3rd and 4th indices.
Check the 1st Bianchi identity.
Check that W2 is trace-free on the indices 1 and 3.
Finally we check the conformal invariance of the Weyl tensor by computing the Weyl tensor W3 for g3 = f(y, z)*g2 and comparing W3 with f(y, z)*W2
See Also
DifferentialGeometry, Tensor, Christoffel, Physics[Christoffel], ContractIndices, CurvatureTensor, Physics[Riemann], InverseMetric, Physics[g_], SymmetrizeIndices
Download Help Document