Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DifferentialGeometry[DualBasis] - calculate the dual basis to a given basis of vectors or 1-forms
Calling Sequence
DualBasis(S, T)
Parameters
S
-
a list of independent vectors or 1-forms
T
(optional) a list of independent 1-forms if S is a list of vectors; a list of independent vectors if S is a list of 1-forms
Description
Let S = [X_1, X_2, ..., X_n] be a list of vectors, defined on a manifold M, which define a basis for the tangent space at a point p. Then the dual basis for the cotangent space at p is the list of 1-forms B = [alpha_1, alpha_2, ..., alpha_n] such that alpha_i(X_j) = delta_ij = {0 if i <> j and 1 if i = j}. The command DualBasis(S) will return the list of 1-forms B.
Let S = [alpha_1, alpha_2, ..., alpha_n] be a list of 1-forms, defined on a manifold M, which define a basis for the cotangent space at a point p. Then the dual basis for the tangent space at p is the list of vectors B = [X_1, X_2, ..., X_n] such that alpha_i(X_j) = delta_ij. The command DualBasis(S) will return the list of 1-forms B.
More generally, let S = [X_1, X_2, ..., X_k] be a list of independent vectors defined on a manifold M and let T = [theta_1, theta_2, ..., theta_k] be a list of independent 1-forms which are transverse to S in the sense that the k x k matrix A_ij = alpha_i(X_j) is non-singular. In this case DualBasis(S, T) returns a list of 1-forms B = [alpha_1, alpha_2, ..., alpha_k] such that span(B) = span(T) and alpha_i(X_j) = delta_ij.
This command is part of the DifferentialGeometry package, and so can be used in the form DualBasis(...) only after executing the command with(DifferentialGeometry). It can always be used in the long form DifferentialGeometry:-DualBasis.
Examples
Initialize a 3-dimensional manifold M with coordinates [x, y, z].
Example 1.
Example 2.
We check the answer by computing the interior products of S2[i] with B2[j].
Example 3.
The dual basis for the forms B2 from Example 2 are the vectors S2.
Example 4.
Calculate the dual basis to the vectors S3 relative to the subspace of 1-forms T3.
See Also
DifferentialGeometry, Annihilator, ComplementaryBasis, DGbasis, CanonicalBasis
Download Help Document