Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DEtools[Zeilberger] - perform Zeilberger's algorithm (differential case)
Calling Sequence
Zeilberger(F, x, y, Dx)
Zeilberger(F, x, y, Dx, 'gosper_free')
Parameters
F
-
hyperexponential function in x and y
x
name
y
Dx
name; denote the differential operator with respect to x
Description
For a specified hyperexponential function of x and y, the Zeilberger(F, x, y, Dx) calling sequence constructs for a Z-pair that consists of a linear differential operator with coefficients that are polynomials of x over the complex number field
and a hyperexponential function of x and y such that
Dx and Dy are the differential operators with respect to x, and y, respectively, defined by , and .
By assigning values to the global variables _MINORDER and _MAXORDER, the algorithm is restricted to finding a Z-pair for such that the order of L is between _MINORDER and _MAXORDER.
The algorithm has two implementations. The default implementation uses a variant of Gosper's algorithm, and another one is based on the universal denominators. With the 'gosper_free' option, Gosper-free implementation is used.
The output from the Zeilberger command is a list of two elements representing the computed Z-pair .
Examples
See Also
SumTools[Hypergeometric][Zeilberger]
References
Almkvist, G, and Zeilberger, D. "The method of differentiating under the integral sign." Journal of Symbolic Computation. Vol. 10. (1990): 571-591.
Download Help Document