Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Van der Pol ODEs
Description
The general form of the Van der Pol ODE is given by the following:
Van_der_Pol_ode := diff(y(x),x,x)-mu*(1-y(x)^2)*diff(y(x),x)+y(x)=0;
See Birkhoff and Rota, "Ordinary Differential Equations", p. 134.
The second order Van der Pol ODE can be reduced to a first order ODE of Abel type as soon as the system succeeds in finding one polynomial symmetry for it (see ?symgen):
with(DEtools, odeadvisor, symgen):
odeadvisor(Van_der_Pol_ode);
symgen(Van_der_Pol_ode, way=3);
From which, giving the same indication directly to dsolve you obtain the reduction of order
ans := dsolve(Van_der_Pol_ode,way=3);
For the structure of the solution above see ?ODESolStruc. Reductions of order can also be tested with odetest
odetest(ans,Van_der_Pol_ode);
The reduced ODE is of type Abel, and can be selected using either the mouse, or the following:
reduced_ode := op([2,2,1,1],ans);
odeadvisor(reduced_ode);
See Also
DEtools, odeadvisor, dsolve, and ?odeadvisor,<TYPE> where <TYPE> is one of: quadrature, missing, reducible, linear_ODEs, exact_linear, exact_nonlinear, sym_Fx, linear_sym, Bessel, Painleve, Halm, Gegenbauer, Duffing, ellipsoidal, elliptic, erf, Emden, Jacobi, Hermite, Lagerstrom, Laguerre, Liouville, Lienard, Van_der_Pol, Titchmarsh; for other differential orders see odeadvisor,types.
Download Help Document