Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Mellin/Inverse Mellin Transforms (inttrans Package)
Introduction
The Mellin and Inverse Mellin transforms mellin and invmellin are part of the inttrans package. The Mellin transform is closely related to the Laplace and Fourier transforms and has applications in many areas, including:
digital data structures
probabilistic algorithms
asymptotics of Gamma-related functions
coefficients of Dirichlet series
asymptotic estimation of integral forms
asymptotic analysis of algorithms
communication theory
The Mellin transform, as a function of , of a function of , is defined by the integral
The Inverse Mellin transform is defined by the contour integral
for a function of .
Simple Examples
Here are a few examples of invmellin, the inverse Mellin transform, in action.
Try an assumption on a:
Try changing the range:
In the above, we see that the correct assumptions on parameters and the correct range must be specified for the inverse Mellin transform.
Continuing with another example:
Check to see that the Mellin transform of this is our original expression:
Further Examples
The following is an example of a Mellin transform which does not simplify:
We try taking the inverse Mellin transform of this, with the valid range, and check to see that we get the original function:
The mellin and invmellin functions can also handle the Whittaker functions:
Try some general formulae:
For more information, see the following help pages: Mellin, Inverse Mellin, inttrans package, Laplace transform, and Fourier transform.
Return to Index for Example Worksheets
Download Help Document