Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
SumTools[Hypergeometric][PolynomialNormalForm] - construct the polynomial normal form of a rational function
Calling Sequence
PolynomialNormalForm(F, n)
Parameters
F
-
rational function of n
n
variable
Description
Let F be a rational function of n over a field K of characteristic 0. The PolynomialNormalForm(F,n) command constructs the polynomial normal form for F.
The output is a sequence of 4 elements where z is an element of K, and are monic polynomials over K such that:
Note: E is the automorphism of K(n) defined by {E(F(n)) = F(n+1)}.
Examples
Check the results.
Condition 1 is satisfied.
Condition 2 is satisfied.
Condition 3 is satisfied.
See Also
evalb, LREtools[dispersion], subs, SumTools[Hypergeometric], SumTools[Hypergeometric][Gosper], SumTools[Hypergeometric][RationalCanonicalForm]
References
Gosper, R.W., Jr. "Decision procedure for indefinite hypergeometric summation." Proc. Natl. Acad. Sci. USA. Vol. 75. (1977): 40-42.
Petkovsek, M. "Hypergeometric solutions of linear recurrences with polynomial coefficients." J. Symb. Comput. Vol. 14. (1992): 243-264.
Download Help Document