Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Student[NumericalAnalysis][LinearSolve] - numerically approximate the solution to a linear system
Calling Sequence
LinearSolve(A, b, opts)
LinearSolve(A, opts)
Parameters
A
-
Matrix; a square matrix or an augmented (A|b) matrix where
b
(optional) Vector or Matrix; a vector of length or a matrix of column length
opts
(optional) equation(s) of the form keyword = value, where keyword is one of initialapprox, maxiterations, method, stoppingcriterion, tolerance; options for numerically approximating the solution to a linear system
Description
The LinearSolve command numerically approximates the solution to the linear system , using the specified method.
The IterativeApproximate command and the MatrixDecomposition command are both used by the LinearSolve command.
If b is a matrix, then the systems will be solved for each column of , and hence there will be multiple solutions returned.
Different options are required to be specified in opts, depending on the method. These dependencies are outlined below.
The Notes section in the Student[NumericalAnalysis][IterativeApproximate] help page lists conditions under which the Jacobi, Gauss-Seidel, and successive over-relaxation iterative methods produce a solution.
Options
initialapprox = Vector or Matrix
The initial approximation. To obtain a float solution instead of an exact solution, the initialapprox should contain floats instead of integers. By default, a zero vector is used.
maxiterations = posint
The maximum number of iterations to perform while approximating the solution to . If the maximum number of iterations is reached and the solution is not within the specified tolerance, a plot of distances can still be returned. By default, maxiterations = 20.
method = jacobi, gaussseidel, SOR(numeric), LU, LU[tridiagonal], PLU, or PLU[scaled]
The method to use when solving the linear system . Please see the Notes section for sufficient conditions for convergence. This option is required. Each method is described below:
jacobi : The Jacobi method. Optionally, the stoppingcriterion, maxiterations, initialapprox and tolerance options may be specified as well.
gaussseidel : The Gauss-Seidel method. Optionally, the stoppingcriterion, maxiterations, initialapprox and tolerance options may be specified as well.
SOR(w) : The Successive Overrelaxation method with w as its extrapolation factor. Optionally, the stoppingcriterion, maxiterations, initialapprox and tolerance options may be specified as well.
LU and LU[tridiagonal] : LU Decomposition. This method performs LU factorization on A and then solves the subsequent systems. None of the remaining options are used with this method. An error will be raised if the LU[tridiagonal] method is specified and A is not tridiagonal.
PLU and PLU[scaled] : PLU Decomposition. This method performs PLU factorization on A and then solves the subsequent systems. None of the remaining options are used with this method.
stoppingcriterion = distance(norm)
The stopping criterion for an iterative technique; it is of the form stoppingcriterion=distance(norm), where distance is either relative or absolute and norm is a nonnegative integer, infinity, Euclidean, or Frobenius. By default, stoppingcriterion=relative(infinity).
tolerance = positive
The tolerance of the approximation. By default, a tolerance of is used.
Examples
Try solving multiple systems (but with the same coefficient Matrix)
See Also
Student[LinearAlgebra], Student[NumericalAnalysis], Student[NumericalAnalysis][BackSubstitution], Student[NumericalAnalysis][ComputationOverview], Student[NumericalAnalysis][ForwardSubstitution], Student[NumericalAnalysis][IterativeApproximate], Student[NumericalAnalysis][MatrixDecomposition]
Download Help Document