Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[ParametricSystemTools][Specialize] - specialize a list of regular chains at a point
Calling Sequence
Specialize(pt, lrc, R)
Parameters
pt
-
point with coordinates in rational number field or a finite field
lrc
list of regular chains
R
polynomial ring
Description
The command Specialize(pt, lrc, R) returns a list of regular chains obtained from those of lrc by specialization at the point pt.
The point pt is given by a list of rational numbers or a list of elements in a finite field; moreover, the number of coordinates in pt must be less than or equal to the number of variables of R.
All polynomials in each regular chain of lrc are evaluated at the last variables of R using the corresponding coordinates of pt.
Regular chains in lrc must specialize well at pt, otherwise an error message displays.
This command is part of the RegularChains[ParametricSystemTools] package, so it can be used in the form Specialize(..) only after executing the command with(RegularChains[ParametricSystemTools]). However, it can always be accessed through the long form of the command by using RegularChains[ParametricSystemTools][Specialize](..).
Examples
The following example shows how to analyze the output of a comprehensive triangular decomposition.
The first part is a list of regular chains which form a pre-comprehensive triangular decomposition of F. The second part is a partition of the projection image of V(F) to the last coordinate. Each constructible set is associated with indices of regular chains in the first part.
Consider a specialization point .
Try to figure out to which partition pt belongs.
Then retrieve the indices of regular chains that specialize well at pt.
Thus you know that the regular chains in lrc_ind all specialize well at the point pt. Then you can do simple substitutions.
Regular chains of form a triangular decomposition of F after specialization at pt.
See Also
BelongsTo, ComprehensiveTriangularize, ConstructibleSet, Info, ParametricSystemTools, PreComprehensiveTriangularize, RegularChains
Download Help Document