Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
QDifferenceEquations[QSimpComb] - simplification of expressions involving q-hypergeometric terms
QDifferenceEquations[QSimplify] - simplification of expressions involving q-hypergeometric terms
Calling Sequence
QSimpComb(f)
QSimplify(f)
Parameters
f
-
algebraic expression
Description
The commands QSimpComb and QSimplify are for simplification of expressions involving q-hypergeometric terms. For a function , the main use of QSimpComb is for detecting if is a q-hypergeometric term in . That is, if is a rational function in (see IsQHypergeometricTerm). If the result is not a rational function, QSimplify returns in general a more compact answer.
This implementation is mainly based on the implementation by H. Boeing, W. Koepf. See the Reference Section.
Examples
Apply QSimpComb to the consecutive ratio . If the result is a rational function in , then H is a q-hypergeometric term.
See Also
QDifferenceEquations[IsQHypergeometricTerm], QDifferenceEquations[QObjects]
References
Boeing, H., and Koepf, W. "Algorithms for q-hypergeometric summation in computer algebra." Journal of Symbolic Computation. Vol. 11. (1999): 1-23.
Download Help Document