Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
QDifferenceEquations[QPochhammer] - q-Pochhammer symbol
QDifferenceEquations[QBinomial] - q-binomial coefficient
QDifferenceEquations[QBrackets] - q-brackets
QDifferenceEquations[QFactorial] - q-factorial
QDifferenceEquations[QGAMMA] - q-Gamma
Calling Sequence
QPochhammer(a, q, infinity)
QPochhammer(a, q, k)
QBinomial(n, k, q)
QBrackets(k, q)
QFactorial(k, q)
QGAMMA(a, q)
Parameters
a
-
algebraic expression
q
name used as the parameter q, or an integer power of a name
k
symbolic integer value
n
Description
The QDifferenceEquations package supports five q-hypergeometric terms. They are q-Pochhammer symbol, q-binomial coefficient, q-brackets, q-factorial, and q-Gamma, which correspond to the five functions QPochhammer, QBinomial, QBrackets, QFactorial, and QGAMMA.
These functions are place holders for the q-objects. The command expand allows expansion of these objects. The command allows the re-write of QBinomial, QBrackets, QFactorial, and QGAMMA in terms of QPochhammer symbols.
The five q-hypergeometric objects are defined as follows.
Note that (the compact Gasper and Rahman notation) means .
The commands QSimpComb and QSimplify are for simplification of expressions involving these q-objects.
This implementation is mainly based on the implementation by H. Boeing, W. Koepf. See the References section.
Examples
Compute the certificate of H (which is a rational function in ):
See Also
QDifferenceEquations[IsQHypergeometricTerm], QDifferenceEquations[QSimpComb]
References
Boeing, H., and Koepf, W. "Algorithms for q-hypergeometric summation in computer algebra." Journal of Symbolic Computation. Vol. 11. (1999): 1-23.
Download Help Document