Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
QDifferenceEquations[QMultiplicativeDecomposition] - construct the four minimal multiplicative decompositions of a q-hypergeometric term
Calling Sequence
QMultiplicativeDecomposition[1](H, q, n, k)
QMultiplicativeDecomposition[2](H, q, n, k)
QMultiplicativeDecomposition[3](H, q, n, k)
QMultiplicativeDecomposition[4](H, q, n, k)
Parameters
H
-
q-hypergeometric term in q^n
q
name used as the parameter q, usually q
n
variable
k
name
Description
Let H be a q-hypergeometric term in q^n. The QMultiplicativeDecomposition[i](H,q,n,k) command constructs the th minimal multiplicative decomposition of H of the form where are rational functions of q^n, and have minimal possible values, for .
Additionally, if then is minimal; if then is minimal; if then is minimal, and under this condition, is minimal; if then is minimal, and under this condition, is minimal.
If QMultiplicativeDecomposition is called without an index, the first minimal multiplicative decomposition is constructed.
Examples
See Also
QDifferenceEquations[QEfficientRepresentation], QDifferenceEquations[QObjects], QDifferenceEquations[QRationalCanonicalForm]
References
Abramov, S.A.; Le, H.Q.; and Petkovsek, M. "Efficient Representations of (q-)Hypergeometric Terms and the Assignment Problem." Submitted.
Abramov, S.A.; Le, H.Q.; and Petkovsek, M. "Rational Canonical Forms and Efficient Representations of Hypergeometric Terms." Proc. ISSAC'2003, pp. 7-14. 2003.
Download Help Document