Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
PolynomialIdeals[VanishingIdeal] - compute the vanishing ideal for finite a set of points
Calling Sequence
VanishingIdeal(S, X)
VanishingIdeal(S, X, T, p)
Parameters
S
-
list or set of points
X
list of variable names
T
(optional) monomial order
p
(optional) characteristic, a non-negative integer
Description
The VanishingIdeal command constructs the vanishing ideal for a set of points in affine space. The output of this command is the ideal of polynomials that vanish (that is, are identically zero) on S.
The first argument must be a list or set of points in affine space. Each point is given as a list with coordinates corresponding to the variables in X.
The third argument is optional, and specifies a monomial order for which a Groebner basis is computed. If omitted, VanishingIdeal chooses lexicographic order, which is generally the fastest order.
The field characteristic can be specified with an optional last argument. The default is characteristic zero.
Multiple occurrences of the same point in S are ignored, so that VanishingIdeal always returns a radical ideal.
Examples
See Also
alias, Groebner[Basis], MonomialOrders, PolynomialIdeals, PolynomialIdeals[IdealInfo], PolynomialIdeals[PrimeDecomposition], PolynomialIdeals[Simplify]
References
Farr, Jeff. Computing Grobner bases, with applications to Pade approximation and algebraic coding theory. Ph.D. Thesis, Clemson University, 2003.
Download Help Document