Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
PolynomialIdeals[Saturate] - saturate an ideal
Calling Sequence
Saturate(J, f, s)
Parameters
J
-
polynomial ideal
f
polynomial, or list or set of polynomials
s
(optional) name
Description
The Saturate command computes the saturation of an ideal J with respect to a polynomial f, denoted J:. Saturation removes all the solutions of f from J, and is equivalent to a repeated application of Quotient. This functionality is also available through the Simplify command.
If the second argument is a list or set of polynomials, then the Saturate command removes the solutions of each polynomial, or equivalently their product.
If the optional third argument s is given, it is assigned a positive integer exponent with the property that J:f^infinity = J:f^s. This value is not guaranteed to be minimal.
Examples
See Also
PolynomialIdeals, PolynomialIdeals[Quotient], PolynomialIdeals[Simplify]
References
Becker, T., and Weispfenning, V. Groebner Bases. New York: Springer-Verlag, 1993.
Download Help Document