Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
OreTools[Euclidean] - perform right or left Euclidean algorithm
Calling Sequence
Euclidean['right'](Poly1, Poly2, A, 'c1', 'c2')
Euclidean(Poly1, Poly2, A, 'c1', 'c2')
Euclidean['left'](Poly1, Poly2, A, 'c1', 'c2')
Parameters
Poly1, Poly2
-
nonzero Ore polynomials; to define an Ore polynomial, use the OrePoly structure.
A
Ore algebra; to define an Ore algebra, use the SetOreRing function.
'c1', 'c2'
(optional) unevaluated names
Description
The Euclidean['right'](Poly1, Poly2, A) or Euclidean(Poly1, Poly2, A) calling sequence returns a list [m, S] where m is a positive integer and S is an array with m nonzero Ore polynomials such that:
In addition, Remainder['right'](S[m-1], S[m], A) = 0. S is called the right Euclidean polynomial remainder sequence of Poly1 and Poly2.
If the fourth argument c1 of Euclidean['right'] or Euclidean is specified, it is assigned the first co-sequence of Poly1 and Poly2 so that:
and c1[m+1] Poly1 is a least common left multiple (LCLM) of Poly1 and Poly2.
If the fifth argument c2 of Euclidean['right'] or Euclidean is specified, it is assigned the second co-sequence of Poly1 and Poly2 so that:
and is an LCLM of Poly1 and Poly2.
The Euclidean['left'](Poly1, Poly2, A) calling sequence returns a list [m, S] where m is a positive integer and S is an array with m nonzero Ore polynomials such that:
In addition, . S is called the left Euclidean polynomial remainder sequence of Poly1 and Poly2.
If the fourth argument c1 of Euclidean['left'] is specified, it is assigned the first co-sequence of Poly1 and Poly2 so that:
and Poly1 c1[m+1] is a least common right multiple (LCRM) of Poly1 and Poly2.
If the fifth argument c2 of Euclidean['left'] is is specified, it is assigned the second co-sequence of Poly1 and Poly2 so that:
and Poly1 c1[m+1]= - Poly2 c2[m+1] is an LCRM of Poly1 and Poly2.
Examples
Perform the right Euclidean algorithm.
Check the co-sequences.
Check the LCLM.
Perform the left Euclidean algorithm.
Check the LCRM.
See Also
OreTools, OreTools/Add, OreTools/Minus, OreTools/Multiply, OreTools/OreAlgebra, OreTools/OrePoly, OreTools/Quotient, OreTools/Remainder, OreTools[SetOreRing]
Download Help Document