Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Finance[CEVProcess] - create new constant elasticity of variance (CEV) process
Calling Sequence
CEVProcess(, mu, sigma, beta, opts)
Parameters
-
algebraic expression; initial value
mu
algebraic expression; drift parameter
sigma
algebraic expression; volatility parameter
beta
algebraic expression; elasticity parameter
opts
(optional) equation(s) of the form option = value where option is scheme; specify options for the CEVProcess command
Description
The CEVProcess command creates new constant elasticity of variance (CEV) process , which is governed by the stochastic differential equation (SDE)
where
is the drift
is the volatility
is the elasticity
and
is the standard Wiener process.
The parameter is the initial value of the process.
The parameters mu, sigma and beta can be any algebraic expressions but must be constant if the process is to be simulated.
The constant elasticity of variance (CEV) process provides an alternative to the lognormal model for equity prices. This model includes the geometric Brownian motion as a special case . The main advantage of such a model is that the volatility of the stock price is no more constant but it is a function of the underlying asset price. In particular, in the CEV model the variations in the underlying asset price are negative correlated with the variations in the volatility level which helps to reduce the well-known volatility smile effect of the lognormal model.
Options
scheme = unbiased or Euler -- This option specifies which discretization scheme should be used for simulating this process.
Compatibility
The Finance[CEVProcess] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
Examples
The following set of examples estimates the distribution of for different values of the elasticity parameter .
See Also
Finance[BlackScholesProcess], Finance[BrownianMotion], Finance[Diffusion], Finance[Drift], Finance[ExpectedValue], Finance[GeometricBrownianMotion], Finance[ItoProcess], Finance[SamplePath], Finance[SampleValues], Finance[StochasticProcesses], Finance[WienerProcess]
References
Glasserman, P., Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag, 2004.
Hull, J., Options, Futures, and Other Derivatives, 5th. edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.
Download Help Document