Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LieAlgebras[JacobsonRadical] - find the Jacobson radical for a matrix Lie algebra
Calling Sequences
JacobsonRadical(M)
Parameters
M - a list of square matrices which define a basis for a matrix Lie algebra A
Description
The Jacobson radical of a matrix algebra A is the set of matrices b in A such that tr(ab) = 0 for all a in A. The Jacobson radical consists entirely of nilpotent matrices and coincides with the nilradical of A.
A list of matrices defining a basis for the Jacobson radical is returned. If the Jacobson radical is trivial, then an empty list is returned.
The command JacobsonRadical is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form JacobsonRadical(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-JacobsonRadical(...).
Examples
Example 1.
Find the Jacobson radical of the set of matrices M.
Clearly each one of these matrices is nilpotent.
Note that J = [M[2], M[4], M[5]]. We check that J is also the nilradical of M, when viewed as an abstract Lie algebra.
See Also
DifferentialGeometry, LieAlgebras, LieAlgebraData, Nilradical
Download Help Document