Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LieAlgebras[DirectSum] - create the direct sum of a list of Lie algebras
Calling Sequences
DirectSum(Summands, AlgName)
Parameters
Summands - a list of Lie algebra data structures or names of Lie algebras
AlgName - a name or string, the name of the direct sum Lie algebra being created
Description
The direct sum of two Lie algebras g1 and g2 is the vector space direct sum g = g1 + g2, with Lie bracket [(x1, x2), (y1, y2)] = [x1, y1] + [x2, y2] where x1, y1 in g1 and x2, y2 in g2. This definition extends in the natural way to the direct sum of several algebras.
DirectSum(Summands, AlgName) creates a Lie algebra data structure for the direct sum of the Lie algebras listed in the first argument. The name given to the direct sum algebra is AlgName.
A Lie algebra data structure contains the structure constants in a standard format used by the LieAlgebras package. In the LieAlgebras package, the command DGsetup is used to initialize a Lie algebra -- that is, to define the basis elements for the Lie algebra and its dual and to store the structure constants for the Lie algebra in memory.
The command DirectSum is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form DirectSum(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-DirectSum(...).
Examples
Example 1.
First we define 3 Lie algebra data structures and initialize their Lie algebras. We display the multiplication tables.
Create the direct sum of the Lie algebra data structures L1 and L2.
Create the direct sum of the Lie algebras Alg1, Alg2 and the Lie algebra data structure L3.
See Also
DifferentialGeometry, LieAlgebras, DecomposeAlgebra, Query[DirectSumDecomposition]
Download Help Document