Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
plots[complexplot3d] - create a 3-D complex plot
Calling Sequence
complexplot3d([expr1, expr2], x=a..b, y=c..d)
complexplot3d([f1, f2], a.. b, c.. d)
complexplot3d(expr3, z=a + b*I..c + d*I)
complexplot3d(f2, a + b*I..c + d*I)
Parameters
expr1, expr2
-
algebraic; expressions in parameters x and y
f1, f2
procedures; functions to be plotted
expr3
algebraic; expression in parameter z
a, b, c, d
realcons; endpoints of parameter ranges
Description
The four different calling sequences to the complexplot3d function above all define plots in three space for expressions or procedures mapping
For 2-D complex plots, see plots/complexplot.
For plotting functions from to complexplot3d plots the first component while coloring the graphic using the second component.
For plotting functions from C to C complexplot3d plots the magnitude of the function while coloring the resulting surface using the argument of the function.
The first two calls plot expressions and procedures, respectively, from to . In the second case f1 and f2 take two arguments and return a real value. The form of the range specifications determine whether an expression or a procedure is to be plotted. The last two calls plot expressions and procedures, respectively, from C to C.
The range components a, b, c, and d must evaluate to real constants. Note that operator notation is used in the second and fourth calls, that is, the procedure name is given without parameters specified, and the ranges must be given simply in the form a..b, rather than as an equation.
Any additional arguments are interpreted as options as described in the plot3d/options help page. For example, the option where m and n are positive integers specifies that the plot is to be constructed on an m by n grid instead of on the default 25 by 25 grid.
Examples
Plot a complex procedure:
Plot an expression from to , where the plot is of the first component colored by the second component:
Repeat the previous example using operator form.
Plot an image created from Newton's iteration:
Plot , where and , in cylindrical coordinates, with r ranging from 0 to 10 and theta from 0 to .
g := proc(z) local w; w := Re(z)*exp(Im(z)*I); w/(exp(w)-1) end proc:
The command to create the plot from the Plotting Guide is
See Also
plot3d[option], plots/complexplot
Download Help Document