Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
numapprox[hornerform] - convert a polynomial to Horner form
Calling Sequence
hornerform(r)
hornerform(r, x)
Parameters
r
-
procedure or expression representing a polynomial or rational function
x
(optional) variable name appearing in r, if r is an expression
Description
This procedure converts a given polynomial r into Horner form, also known as nested multiplication form. This is a form which minimizes the number of arithmetic operations required to evaluate the polynomial.
If r is a rational function (i.e. a quotient of polynomials) then the numerator and denominator are each converted into Horner form.
If the second argument x is present then the first argument must be a polynomial (or rational expression) in the variable x. If the second argument is omitted then either r is an operator such that yields a polynomial (or rational expression) in y, or else r is an expression with exactly one indeterminate (determined via indets).
Note that for the purpose of evaluating a polynomial efficiently, the Horner form minimizes the number of arithmetic operations for a general polynomial. Specifically, the cost of evaluating a polynomial of degree n in Horner form is: n multiplications and n additions.
The command with(numapprox,hornerform) allows the use of the abbreviated form of this command.
Examples
See Also
convert[horner], numapprox[confracform]
Download Help Document