Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
linalg[eigenvalues] - compute the eigenvalues of a matrix
Calling Sequence
eigenvalues(A)
eigenvalues(A, C)
eigenvalues(A, 'implicit')
eigenvalues(A, 'radical')
Parameters
A
-
square matrix
C
matrix of the same shape as A
Description
Important: The linalg package has been deprecated. Use the superseding packages, LinearAlgebra and VectorCalculus, instead.
- For information on migrating linalg code to the new packages, see examples/LinearAlgebraMigration.
The call eigenvalues(A) returns a sequence of the eigenvalues of A. (Refer to ?sequence).
If A contains floating-point numbers, a numerical method is used where all arithmetic is done at the precision specified by Digits. Note that all the entries of A must be numerical, i.e. of type numeric or complex(numeric).
Otherwise (no floating-point numbers, i.e. the symbolic case), the eigenvalues are computed by solving the characteristic polynomial for the scalar variable lambda, where I is the identity matrix.
If a second parameter 'implicit' is given, the eigenvalues are expressed using Maple's RootOf notation for algebraic extensions. If the parameter 'radical' is given (the default), Maple tries to express the eigenvalues in terms of exact radicals. Note that if the characteristic polynomial has a factor of degree greater than four, then it may not be possible to express all the eigenvalues in terms of radicals.
The call eigenvalues(A, C) solves the ``generalized eigenvalue problem'', that is, finds the roots of the polynomial .
The command with(linalg,eigenvalues) allows the use of the abbreviated form of this command.
Examples
See Also
linalg(deprecated)[charpoly], linalg(deprecated)[eigenvectors], LinearAlgebra, sequence
Download Help Document