Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Solving Linear ODEs
Description
The general form of the linear ODE is given by:
where the coefficients can be functions of , see Differentialgleichungen, by E. Kamke, p. 69. Roughly speaking, there is no general method for solving the most general linear ODE of differential order greater than one. However, this is an active research area and there are many solving schemes which are applicable when the linear ODE satisfies certain conditions. In all the cases, if the method is applicable and the ODE is of second order, the ODE can be integrated to the end; otherwise, its order can be reduced by one or more, depending on the case. A summary of the methods implemented in dsolve for linear ODEs is as follows:
the ODE is exact (see odeadvisor, exact_linear);
the coefficients are rational functions and the ODE has exponential solutions (see DEtools, expsols);
the ODE has liouvillian solutions (see DEtools, kovacicsols);
the ODE has three regular singular points (see DEtools, RiemannPsols).
the ODE has simple symmetries of the form (see odeadvisor, sym_Fx);
the ODE has special functions" solutions (see odeadvisor, classifications for second order ODEs).
Examples
The most general exact linear non-homogeneous ODE of second order; this case is solvable (see odeadvisor, exact_linear):
Exponential solutions for a third order linear ODE .
An example of an ODE with regular singular points
An example for which symmetries of the form can be found (see odeadvisor, sym_Fx)
Some ODEs with special function solutions (see odeadvisor, second order ODEs).
Bessel ODE.
Complete Elliptic Integral ODE.
Gegenbauer ODE.
See Also
DESol, dsolve, odeadvisor, odeadvisor,TYPES
Download Help Document