Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Solving Linear Ordinary Differential Equations (LODEs) by computing integrating factors for them
Description
Integrating factors for second and higher order linear ODEs
For linear ODEs (LODEs) of order 2 or greater, it is possible to calculate integrating factors by solving the adjoint of the LODE. This could be as difficult as the original problem, or much easier, depending on the example. This method is implemented in dsolve.
Examples
This ODE has the following adjoint
This adjoint equation is in turn solvable by dsolve
Now the solutions to the adjoint equation are integrating factors of the original LODE, so the two independent solutions implied in the general solution above
are integrating factors of ode. These integrating factors could also be found using the intfactor directly
Constructing solutions using integrating factors
How are these integrating factors transformed into a solution to the original problem? By using them to construct two first integrals; that is: two ODEs of lower order (in this case two first order ODEs). For that purpose it is provided the firint command which receives an exact ODE and returns a first integral. The idea is simple: an exact ODE is a total derivative - say dR/dx; firint returns the R + _C1:
Eliminating y' from these two first integrals (and replacing _C1 by _C2 in one of them) leads to the solution f(x,y(x),_C1,_C2) = 0 to this ode. So this process could be run interactively, as shown, or in one step
See Also
DEtools, dsolve,education, firint, firtest, intfactor, muchange, mutest, PDEtools, redode
Download Help Document