Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
combinat[fibonacci] - compute Fibonacci numbers or polynomials
Calling Sequence
fibonacci(n)
fibonacci(n, x)
Parameters
n, x
-
algebraic expressions
Description
The call fibonacci(n) computes the nth Fibonacci number F(n), if n is an integer; otherwise it returns unevaluated.
The call fibonacci(n, x) computes the nth Fibonacci polynomial in x if n is an integer; otherwise it returns unevaluated.
The Fibonacci numbers are defined by the linear recurrence
The Fibonacci polynomials are defined similarly by
Note that .
The method used to compute F(n) is, however, based on the following identity: Let A be the two by two matrix . Observe that Thus F(n) can be computed quickly (in time instead of ) by computing using binary powering.
The generating function for F(n, x) is
The command with(combinat,fibonacci) allows the use of the abbreviated form of this command.
Examples
See Also
combinat
Download Help Document