Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
codegen[JACOBIAN] - compute the JACOBIAN matrix of a Maple procedure
Calling Sequence
JACOBIAN(F)
JACOBIAN(F, X)
JACOBIAN(F, X, ...)
Parameters
F
-
list of Maple procedures
X
list of symbols
Description
The first argument F is a list of Maple procedures f1,f2,...,fm which compute functions of x1,x2,...,xn. The JACOBIAN command outputs a new procedure which when executed at given values for x1,x2,...,xn, returns a matrix J of the partial derivatives at the given values where . For example, given
f := proc(x, y) y^2*exp(-x) end proc;
g := proc(x, y) x*y*exp(-x) end proc;
the output of J := JACOBIAN([f,g]); is the procedure
proc(x, y) local df, dfr0, grd, t1, t2;
t1 := y^2;
t2 := exp(-x);
df := array(1 .. 2);
dfr0 := array(1 .. 4);
df[2] := t1;
df[1] := t2;
dfr0[2] := x*y;
grd := array(1 .. 2, 1 .. 2);
grd[1, 1] := -df[2]*exp(-x);
grd[1, 2] := 2*df[1]*y;
grd[2, 1] := y*t2 - dfr0[2]*exp(-x);
grd[2, 2] := x*t2;
return grd
end proc
The J procedure can be optimized by optimize(J). When J is called with inputs , it outputs the matrix
The JACOBIAN code is constructed by applying the joinprocs command to the procedures F then applying the GRADIENT command. The GRADIENT command uses automatic differentiation. See codegen[GRADIENT] for details. The remaining arguments to JACOBIAN are optional, they are described below.
By default, JACOBIAN computes the partial derivatives of all procedures in F w.r.t. all the parameters present in F[1]. The optional argument X, a list of symbols, may be used to specify which parameters to take the derivative w.r.t.
Two algorithms are supported, the so-called forward and reverse modes. By default, JACOBIAN tries to use the reverse mode since it usually leads to a more efficient code. If it is unable to use the reverse mode, the forward mode is used. The user may specify which algorithm is to be used by giving the optional argument mode=forward or mode=reverse.
The matrix of partial derivatives is, by default, returned as an array. The optional argument result_type=list, result_type=array, or result_type=seq specifies that the matrix of derivatives returned is to be a Maple list, array, and sequence respectively.
The command with(codegen,JACOBIAN) allows the use of the abbreviated form of this command.
Examples
f := proc(x,y) x*y^2 end proc;
g := proc(x,y) x^2*y end proc;
See Also
codegen[GRADIENT], codegen[joinprocs], codegen[optimize]
Download Help Document